ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 177]      



Задача 111811

Темы:   [ Числовые таблицы и их свойства ]
[ Процессы и операции ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

Прислать комментарий     Решение

Задача 111877

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?

Прислать комментарий     Решение

Задача 111881

Темы:   [ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
[ Наибольшая или наименьшая длина ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9,10

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Прислать комментарий     Решение

Задача 116047

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 10,11

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).

  а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным?

  б) Пусть стёрлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стёршиеся записи?

Прислать комментарий     Решение

Задача 116560

Темы:   [ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10

На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .