Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 316]
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Треугольник можно разрезать на три подобных друг другу треугольника.
Доказать, что его можно разрезать на любое число подобных друг другу треугольников.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.
Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 316]