ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 316]      



Задача 66196

Темы:   [ Теория алгоритмов (прочее) ]
[ Полуинварианты ]
[ Обратный ход ]
Сложность: 4-
Классы: 8,9,10,11

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
  а) каждая карта наверняка оказалась не там, где была вначале?
  б) рядом со свободным местом наверняка не было туза пик?
Прислать комментарий     Решение


Задача 66302

Темы:   [ Разные задачи на разрезания ]
[ Индукция в геометрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Саша разрезал бумажный треугольник на два треугольника. Затем он каждую минуту резал на два треугольника один из полученных ранее треугольников. Через некоторое время, не меньшее часа, все полученные Сашей треугольники оказались равными. Укажите все исходные треугольники, для которых возможна такая ситуация.

Прислать комментарий     Решение

Задача 66336

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Было 100 дверей, у каждой свой ключ (отпирающий только эту дверь). Двери пронумерованы числами 1, 2, ..., 100, ключи тоже, но, возможно, с ошибками: номер ключа совпадает с номером двери или отличается на 1. За одну попытку можно выбрать любой ключ, любую дверь и проверить, подходит ли этот ключ к этой двери. Можно ли гарантированно узнать, какой ключ какую дверь открывает, сделав не более
  а) 99 попыток;
  б) 75 попыток;   в) 74 попытки.

Прислать комментарий     Решение

Задача 66706

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Гомотетия (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?

Прислать комментарий     Решение

Задача 67116

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные проекции ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .