ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 316]      



Задача 66473

Темы:   [ Площадь (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?
Прислать комментарий     Решение


Задача 66507

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

Саша выписала числа от одного до ста, а Миша часть из них стер. Среди оставшихся у 20 чисел есть в записи единица, у 19 чисел есть в записи двойка, а у 30 чисел нет ни единицы, ни двойки. Сколько чисел стер Миша?
Прислать комментарий     Решение


Задача 66529

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)
Прислать комментарий     Решение


Задача 66543

Темы:   [ Целочисленные решетки (прочее) ]
[ Разрезания (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)
Прислать комментарий     Решение


Задача 66735

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .