Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 378]
Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.
Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если OD = OE, то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.
|
|
Сложность: 3 Классы: 7,8,9
|
Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).
|
|
Сложность: 3 Классы: 7,8,9
|
Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы
одно, которое делится на сумму своих цифр.
|
|
Сложность: 3 Классы: 7,8,9
|
Из чисел 1, 2, 3, ..., 1985 выбрать наибольшее количество чисел так, чтобы разность любых двух выбранных чисел не была простым числом.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 378]