ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 378]      



Задача 116893

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Четырехугольная пирамида ]
[ Четность и нечетность ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Какое наибольшее количество треугольных граней может иметь пятигранник?

Прислать комментарий     Решение

Задача 116899

Темы:   [ Четырехугольник (неравенства) ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Существует ли такие выпуклый четырёхугольник и точка P внутри него, что сумма расстояний от P до вершин больше периметра четырёхугольника?

Прислать комментарий     Решение

Задача 116923

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

В четырёхугольнике есть два прямых угла, а его диагонали равны. Верно ли, что он является прямоугольником?

Прислать комментарий     Решение

Задача 116924

Темы:   [ Произведения и факториалы ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На какую наибольшую степень тройки делится произведение 3·33·333·...·3333333333 ?

Прислать комментарий     Решение

Задача 116925

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .