Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 201]
|
|
Сложность: 4- Классы: 8,9,10
|
Треугольник
ABC вписан в
окружность с центром в
O .
X "– произвольная точка внутри
треугольника
ABC , такая, что
XAB=
XBC=ϕ , а
P
– такая точка, что
PX
OX ,
XOP=ϕ , причем углы
XOP и
XAB одинаково
ориентированы. Докажите, что
все такие точки
P лежат на одной прямой.
Две равные окружности пересекаются в точках
A и
B .
P – отличная
от
A и
B точка одной из окружностей,
X ,
Y – вторые точки пересечения
прямых
PA ,
PB с другой окружностью. Докажите, что прямая, проходящая через
P и перпендикулярная
AB , делит одну из дуг
XY пополам.
В треугольнике
ABC точка
I — центр вписанной
окружности. Точки
M и
N — середины сторон
BC и
AC
соответственно. Известно, что угол
AIN прямой. Докажите, что
угол
BIM — также прямой.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.
Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 201]