Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 201]
|
|
Сложность: 3+ Классы: 9,10,11
|
На стороне
AB треугольника ABC выбрана точка M. В треугольнике ACM
точка I1 – центр вписанной, J1 – центр вневписанной
окружности, касающейся стороны CM. В треугольнике BCM точка
I2 – центр вписанной, J2 центр вневписанной окружности,
касающейся стороны CM. Докажите, что прямая, проходящая через
середины отрезков I1I2 и J1J2 перпендикулярна AB.
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть $I$ – центр вписанной окружности неравнобедренного треугольника $ABC$. Докажите, что существует единственная пара точек $M$, $N$, лежащих соответственно на сторонах $AC$, $BC$, такая, что $\angle AIM = \angle BIN$ и $MN \parallel AB$.
|
|
Сложность: 3+ Классы: 8,9,10
|
Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.
Две окружности пересекаются в точках
P и
Q . Третья
окружность с центром в точке
P пересекает первую в точках
A и
B , а вторую – в точках
C и
D (см.рисунок).
Докажите что углы
AQD и
BQC равны.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 201]