Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 201]
|
|
Сложность: 3+ Классы: 10,11
|
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность, центр O которой лежит
внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
|
|
Сложность: 3+ Классы: 5,6,7
|
Марсиане делят сутки на 13 часов. После того, как Марсовский Заяц уронил часы в чай, у них изменилась скорость вращения секундной стрелки, а скорость вращения других стрелок осталась прежней. Известно, что каждую полночь все три стрелки совпадают. Сколько всего за сутки может быть таких моментов времени, когда три стрелки совпадут?
|
|
Сложность: 3+ Классы: 9,10,11
|
Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 201]