ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Протасов В.Ю.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 115732

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.

Прислать комментарий     Решение

Задача 115886

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10,11

Дан треугольник ABC. Из вершин B и C опущены перпендикуляры BM и CN на биссектрисы углов C и B соответственно.
Докажите, что прямая MN пересекает стороны AC и AB в точках их касания с вписанной окружностью.

Прислать комментарий     Решение

Задача 115893

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что  ∠BAC = α.

Прислать комментарий     Решение

Задача 55681

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Серединный перпендикуляр к стороне AB треугольника ABC пересекает сторону AC в точке K, причём точка K делит ломаную ACB на две части равной длины. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 65041

Темы:   [ Две касательные, проведенные из одной точки ]
[ Перегруппировка площадей ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 9,10

Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .