ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все авторы
>>
Готман Э.Г.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 5]
На сторонах BC и CD квадрата ABCD взяты точки E и F, причём ∠EAF = 45°. Отрезки AE и AF пересекают диагональ BD в точках P и Q.
Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.
Хорда окружности удалена от центра на расстояние h. В каждый из сегментов, стягиваемых хордой, вписан квадрат так, что две соседние вершины квадрата лежат на дуге, две другие — на хорде. Чему равна разность длин сторон квадратов?
Из вершины C прямого угла прямоугольного треугольника ABC проведена высота CD, и в треугольники ACD и BCD вписаны окружности с центрами P и Q. Общая внешняя касательная к этим окружностям пересекает катеты AC и BC в точках M и N, а высоту CD — в точке K. Докажите, что: а) треугольники CMN и CBA подобны; б) точки C, M, N, P и Q лежат на окружности с центром K, радиус которой равен радиусу вписанной окружности треугольника ABC.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|