ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фомин Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 98055

Темы:   [ Свойства коэффициентов многочлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фомин Д.

Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
(x – 1)n.

Прислать комментарий     Решение

Задача 98083

Темы:   [ Комбинаторика (прочее) ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин Д.

В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.

Прислать комментарий     Решение

Задача 108033

Темы:   [ Неравенство треугольника ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?

Прислать комментарий     Решение

Задача 108056

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Прислать комментарий     Решение

Задача 108447

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Касающиеся окружности ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Известно, что в трапецию можно вписать окружность.
Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .