ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Грибалко А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



Задача 111652

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 4-
Классы: 10,11

На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.

Прислать комментарий     Решение

Задача 111685

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Обход графов ]
Сложность: 4-
Классы: 8,9,10,11

Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

Прислать комментарий     Решение

Задача 66534

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 7,8,9,10

В клетках квадратной таблицы n × n, где n > 1, требуется расставить различные целые числа от 1 до n2 так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на n, – в разных строках и в разных столбцах. При каких n это возможно?
Прислать комментарий     Решение


Задача 66549

Темы:   [ Переправы ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 6,7

Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?
Прислать комментарий     Решение


Задача 66566

Темы:   [ Полуинварианты ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4
Классы: 9,10,11

На доске написаны $1000$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $1000$ последовательных целых чисел.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .