Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 4- Классы: 10,11
|
Даны многочлен P(x) и такие числа a1, a2, a3, b1, b2, b3, что a1a2a3 ≠ 0. Оказалось, что P(a1x + b1) + P(a2x + b2) = P(a3x + b3) для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.
|
|
Сложность: 4 Классы: 10,11
|
Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?
|
|
Сложность: 4 Классы: 7,8,9
|
Докажите, что произвольный треугольник можно разрезать на три
многоугольника, один из которых должен быть тупоугольным треугольником,
так, чтобы потом сложить из них прямоугольник. (Переворачивать части
можно).
|
|
Сложность: 4 Классы: 8,9,10
|
Фигура мамонт бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Страница:
<< 1 2 [Всего задач: 9]