Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 141]
|
|
Сложность: 3+ Классы: 5,6,7
|
Разрежьте квадрат 9 × 9 клеток по линиям
сетки на три фигуры равной площади так, чтобы периметр
одной из частей оказался равным сумме периметров двух
других.
|
|
Сложность: 3+ Классы: 7,8,9
|
Два квадрата и равнобедренный треугольник
расположены так, как показано на рисунке (вершина K
большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.
|
|
Сложность: 3+ Классы: 8,9,10
|
Король вызвал двух мудрецов и объявил им задание:
первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу
называет лишь четвертое по величине из этих чисел, после
чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите наименьшее натуральное число $N>9$, которое не делится на 7, но если вместо любой его цифры поставить семерку, то получится число, которое делится на 7.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 141]