ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Натансон Г.И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 73625

Темы:   [ Иррациональные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Если x1 < x2 < x3 < ... < xn натуральные числа, то сумма n – 1 дробей, k-я из которых, где k < n, равна отношению квадратного корня из разности xk+1 - xk к числу xk+1, меньше суммы чисел 1, 1/2, 1/3, ..., 1/n2. Докажите это.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .