ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Женодаров Р.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 116936

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?

Прислать комментарий     Решение

Задача 64314

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7

В шахматном турнире каждый из восьми участников сыграл с каждым. В случае ничьей (и только в этом случае) партия ровно один раз переигрывалась и результат переигровки заносился в таблицу. Барон Мюнхгаузен утверждает, что в итоге два участника турнира сыграли по 11 партий, один – 10 партий, три – по 8 партий и два – по 7 партий. Может ли он оказаться прав?

Прислать комментарий     Решение

Задача 64580

Темы:   [ Ромбы. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне CD ромба ABCD нашлась такая точка K, что  AD = BK.  Пусть F – точка пересечения диагонали BD и серединного перпендикуляра к стороне BC. Докажите, что точки A, F и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 64645

Темы:   [ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

На стороне BC треугольника ABC выбрана точка L так, что AL в два раза больше медианы CM. Оказалось, что угол ALC равен 45°.
Докажите, что AL и CM перпендикулярны.

Прислать комментарий     Решение

Задача 65072

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .