ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Женодаров Р.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 77]      



Задача 66188

Темы:   [ Признаки и свойства касательной ]
[ Поворот (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.

Прислать комментарий     Решение

Задача 66714

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 8,9,10,11

У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?

Прислать комментарий     Решение

Задача 98413

Темы:   [ Принцип Дирихле (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8,9

На шахматной доске размером 8×8 отметили 17 клеток.
Докажите, что из них можно выбрать две так, что коню нужно не менее трёх ходов для попадания с одной из них на другую.

Прислать комментарий     Решение

Задача 98446

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

На плоскости проведено n прямых. Каждая пересекается ровно с 1999 другими. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Задача 98451

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 10,11

В пространстве проведено n плоскостей. Каждая пересекается ровно с 1999 другими. Найдите все n, при которых это возможно.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .