Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 4 Классы: 7,8,9
|
Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?
|
|
Сложность: 4+ Классы: 10,11
|
Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))?
|
|
Сложность: 4+ Классы: 8,9,10
|
У игрока есть m золотых и n серебряных монет. В начале каждого
раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?
На плоскости расположен круг. Какое наименьшее количество прямых надо провести,
чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз),
можно было накрыть им любую заданную точку плоскости?
Страница:
<< 1 2 [Всего задач: 9]