ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Малкин М.И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 [Всего задач: 15]      



Задача 67295

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 64453

Темы:   [ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Прислать комментарий     Решение

Задача 67197

Темы:   [ Целочисленные и целозначные многочлены ]
[ Основная теорема алгебры и ее следствия ]
Сложность: 4
Классы: 10,11

Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.
Прислать комментарий     Решение


Задача 67294

Темы:   [ Правильная пирамида ]
[ Против большей стороны лежит больший угол ]
[ Соображения непрерывности ]
[ Построения в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
Прислать комментарий     Решение


Задача 111342

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5-
Классы: 10,11

 k ≥ 6  – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до  k – 1,  то эти значения равны.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .