Страница:
<< 1 2 3
4 >> [Всего задач: 18]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости задано n точек, являющихся вершинами выпуклого n-угольника, n > 3. Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых – заданные точки.
а) Докажите, что k < 2n/3.
б) Приведите пример конфигурации, для которой k > 0,666n.
|
|
Сложность: 4 Классы: 9,10,11
|
На окружности с диаметром AC выбрана произвольная точка B, отличная от A и C. Пусть M, N – середины хорд AB, BC, а P, Q – середины меньших дуг, стягиваемых этими хордами. Прямые AQ и BC пересекаются в точке K, а прямые CP и AB – в точке L.
Докажите, что прямые MQ, NP и KL пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 10,11
|
На стороне AB треугольника ABC взята произвольная точка C1. Точки A1, B1 на лучах BC и AC таковы, что ∠AC1B1 = ∠BC1A1 = ∠ACB. Прямые AA1 и BB1 пересекаются в точке C2. Докажите, что все прямые C1C2 проходят через одну точку.
|
|
Сложность: 4+ Классы: 10,11
|
Окружности ω1 и ω2 касаются друг друга внешним образом в точке P. Из точки A окружности ω2, не лежащей на линии центров окружностей, проведены касательные AB, AC к ω1. Прямые BP, CP вторично пересекают ω2 в точках E и F. Докажите, что прямая EF, касательная к ω2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны n (n > 2) точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?
Страница:
<< 1 2 3
4 >> [Всего задач: 18]