ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Mahdi Etesami Fard

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 7]      



Задача 66311

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.

Прислать комментарий     Решение

Задача 66674

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Прислать комментарий     Решение


Задача 66776

Темы:   [ Параллелограммы (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Mahdi Etesami Fard

Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.
Прислать комментарий     Решение


Задача 66783

Темы:   [ Вписанные и описанные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 9,10,11

Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.
Прислать комментарий     Решение


Задача 64807

Темы:   [ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Проекция на прямую (прочее) ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Докажите, что три окружности с центрами A, B, C, проходящие через H, имеют общую касательную.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .