ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Эрднигор А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 67133

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Точка Торричелли ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 10,11

Дан центрально-симметричный октаэдр $ABCA'B'C'$ (пары $A$ и $A'$, $B$ и $B'$, $C$ и $C'$ противоположны), такой, что суммы плоских углов при каждой из вершин октаэдра равны $240^{\circ}$. В треугольниках $ABC$ и $A'BC$ отмечены точки Торричелли $T_1$ и $T_2$. Докажите, что расстояния от $T_1$ и $T_2$ до $BC$ равны.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .