ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите все пары натуральных чисел $m$ и $n$, для которых $m!! = n!$. (Двойной факториал $m!!$ — это произведение всех натуральных чисел, не превосходящих $m$ и имеющих ту же чётность, что $m$. Например, $5!! = 15$, $6!! = 48$).

Вниз   Решение


Автор: Глебов А.

В каждой клетке таблицы $N\times N$ записано число. Назовём клетку хорошей, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток.

ВверхВниз   Решение


Автор: Глебов А.

Назовём двуклетчатую карточку $2\times 1$ правильной, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97940  (#1)

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Плачко В.

Докажите, что предпоследняя цифра любой степени числа 3 чётна.

Прислать комментарий     Решение

Задача 54582  (#2)

Темы:   [ ГМТ - прямая или отрезок ]
[ Ромбы. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

Прислать комментарий     Решение

Задача 97942  (#3)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Задача 108024  (#4)

Темы:   [ Перегруппировка площадей ]
[ Построения ]
[ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Через середину дуги AC проведите прямую, делящую площадь фигуры пополам.

Прислать комментарий     Решение

Задача 97944  (#5)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .