ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите все пары натуральных чисел $m$ и $n$, для которых $m!! = n!$. (Двойной факториал $m!!$ — это произведение всех натуральных чисел, не превосходящих $m$ и имеющих ту же чётность, что $m$. Например, $5!! = 15$, $6!! = 48$). ![]() ![]() В каждой клетке таблицы $N\times N$ записано число. Назовём клетку хорошей, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток. ![]() ![]() ![]() Назовём двуклетчатую карточку $2\times 1$ правильной, если в ней записаны два натуральных числа, причём число в верхней клетке меньше числа в нижней клетке. За ход разрешается изменить оба числа на карточке: либо прибавить к каждому одно и то же целое число (возможно, отрицательное), либо умножить каждое на одно и то же натуральное число, либо разделить каждое на одно и то же натуральное число; при этом карточка должна остаться правильной. За какое наименьшее количество таких ходов из любой правильной карточки можно получить любую другую правильную карточку? ![]() ![]() |
Страница: 1 2 >> [Всего задач: 7]
Докажите, что предпоследняя цифра любой степени числа 3 чётна.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
Страница: 1 2 >> [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |