ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Старый сапожник Карл сшил сапоги и послал своего сына Ганса на базар – продать их за 25 талеров. На базаре к мальчику подошли два инвалида (один без левой ноги, другой – без правой) и попросили продать им по сапогу. Ганс согласился и продал каждый сапог за 12,5 талеров. ![]() ![]() Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC. ![]() ![]() ![]() Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны. ![]() ![]() |
Страница: 1 [Всего задач: 5]
2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)
Имеется 100 палочек, из которых можно сложить 100-угольник.
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?
Дан картонный прямоугольник со сторонами a см и b см, где b/2 < a < b.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |