Страница: 1 [Всего задач: 4]
Задача
79361
(#1)
|
|
Сложность: 3+ Классы: 8,9
|
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
Задача
79362
(#2)
|
|
Сложность: 3 Классы: 8
|
Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен
свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер
n, что
масса гири с номером
n строго больше
кг.
Задача
79363
(#3)
|
|
Сложность: 3+ Классы: 8
|
Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.
Задача
79364
(#4)
|
|
Сложность: 4- Классы: 8
|
Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с
Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения
вертикальных и горизонтальных прямых. При этом каждый из них своим ходом
должен отметить такой узел, что после этого все отмеченные узлы лежали в
вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из
играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто
выигрывает при правильной игре?
Страница: 1 [Всего задач: 4]