Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]
|
|
Сложность: 4- Классы: 8,9,10
|
В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3.
Какое наибольшее возможное количество единиц может быть в этой таблице?
|
|
Сложность: 4- Классы: 8,9,10
|
Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины?
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?
|
|
Сложность: 4- Классы: 8,9,10
|
Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей
a) больше суммы чисел, выбранных Юрой?
б) больше суммы любых других пяти чисел исходной таблицы, удовлетворяющих условию: никакие два из них не стоят в одной строке или в одном столбце?
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]