ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 103916

Темы:   [ Средняя линия треугольника ]
[ Ортоцентр и ортотреугольник ]
[ Параллелограмм Вариньона ]
[ Теорема о группировке масс ]
Сложность: 4
Классы: 8,9,10

Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.

Прислать комментарий     Решение

Задача 103933

Темы:   [ Преобразования подобия (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 9,10,11

Автор: Вим Пайлс

На плоскости даны два отрезка A1B1 и A2B2, причём  A2B2/A1B1 = k < 1.  На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что  A3А2/А3А1 = А4А2/А4А1 = k.  Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k.  Найти угол между прямыми А3В3 и А4В4.

Прислать комментарий     Решение

Задача 103934

Темы:   [ Окружность, вписанная в угол ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

Прислать комментарий     Решение

Задача 103935

Темы:   [ Ортоцентр и ортотреугольник ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10

Пусть H – ортоцентр треугольника ABC, X – произвольная точка. Окружность с диаметром XH вторично пересекает прямые AH, BH, CH в точках A1, B1, C1, а прямые AX, BX, CX в точках A2, B2, C2. Доказать, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115737

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,11

Вокруг выпуклого четырёхугольника ABCD описаны три прямоугольника. Известно, что два из этих прямоугольников являются квадратами. Верно ли, что и третий обязательно является квадратом? (Прямоугольник описан около четырёхугольника ABCD, если на каждой стороне прямоугольника лежит по одной вершине четырёхугольника.)

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .