ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета. б) Можно ли обойтись тремя цветами? ![]() ![]() Сколько квадратов изображено на рисунке? ![]() ![]() ![]() Докажите, что сумма расстояний от точки, взятой произвольно внутри правильного треугольника, до его сторон постоянна (и равна высоте треугольника). ![]() ![]() ![]() Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра? ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225]
Встречается ли в треугольнике Паскаля число 1999?
Во сколько раз сумма чисел, стоящих в сто первой строке треугольника Паскаля, больше суммы чисел, стоящих в сотой строке?
Проставим знаки плюс и минус в 99-й строке треугольника Паскаля. Между первым и вторым числом – минус, между вторым и третьим – плюс, между третьим и четвёртым – минус, потом опять плюс, и так далее. Найдите значение полученного выражения.
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 225] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |