Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 69]
|
|
Сложность: 3+ Классы: 9,10,11
|
В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что
P = Q.
|
|
Сложность: 3+ Классы: 7,8,9
|
На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что BK = KL = LC, а на стороне АС отмечена точка М так,
что АМ = ⅓ AC. Найдите сумму углов AKM и ALM.
|
|
Сложность: 3+ Классы: 7,8,9
|
Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым?
|
|
Сложность: 4- Классы: 7,8,9,10
|
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
|
|
Сложность: 4- Классы: 9,10,11
|
Вписанная окружность треугольника ABC касается его сторон ВС, АС и АВ в точках A', B' и C' соответственно. Точка K – проекция точки C' на прямую A'B'. Докажите, что KC' – биссектриса угла AKB.
Страница:
<< 8 9 10 11 12 13
14 >> [Всего задач: 69]