ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На стороне $AB$ треугольника $ABC$ отметили точку $M$ так, что $AM=BC$. Из точек $M$ и $B$ на сторону $AC$ опустили перпендикуляры $MK$ и $BH$ (см. рис.). $AC$ вдвое больше $KH$. Угол $A$ равен $22$ градусам. Найдите угол $C$.

Вниз   Решение


Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что ABCD – квадрат?

ВверхВниз   Решение


Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 31298  (#26)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что  32n – 1   a) делится на 2n+2;   б) не делится на 2n+3.

Прислать комментарий     Решение

Задача 31299  (#27)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Найти все натуральные n, для которых  2n + 33  – точный квадрат.

Прислать комментарий     Решение

Задача 31300  (#28)

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах:  a² + b² = 3(c² + d²).

Прислать комментарий     Решение

Задача 31301  (#29)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

Найти наименьшее значение выражения  |36k – 5l|  (k, l – натуральные числа).

Прислать комментарий     Решение

Задача 31302  (#30)

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Решить в простых числах уравнение  pqr = 7(p + q + r).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .