ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 32801  (#06)

Темы:   [ Задачи на движение ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка.
Сколько раз за сутки все три стрелки на таких часах совпадут?

Прислать комментарий     Решение

Задача 32802  (#07)

Темы:   [ Удвоение медианы ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .