Страница: 1
2 3 >> [Всего задач: 13]
На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.
Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении AL : LC = 3 : 1. Докажите, что угол KLD прямой.
Через вершину A квадрата ABCD проведены прямые
l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые.
Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны.
На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом.
Докажите, что AB1A1C1 – параллелограмм.
Страница: 1
2 3 >> [Всего задач: 13]