ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

Вниз   Решение


Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.

ВверхВниз   Решение


Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956]      



Задача 56616  (#02.073)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Из вершин A и B опущены перпендикуляры на CD, пересекающие прямые BD и AC в точках K и L соответственно. Докажите, что AKLB — ромб.
Прислать комментарий     Решение


Задача 56617  (#02.074)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что площадь четырехугольника ABCD равна  (AB . CD + BC . AD)/2.
Прислать комментарий     Решение


Задача 56618  (#02.075)

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 56619  (#02.076)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 4
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей.
Докажите, что прямая, проведенная из точки P перпендикулярно BC, делит сторону AD пополам.
Прислать комментарий     Решение


Задача 56620  (#02.077)

Тема:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 4
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Докажите, что середины сторон четырехугольника ABCD и проекции точки P на стороны лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .