Страница:
<< 1 2 3 4
5 >> [Всего задач: 21]
Окружность S1 вписана в угол A треугольника ABC. Из вершины C к ней проведена касательная (отличная от CA), и в образовавшийся треугольник с вершиной B вписана окружность
S2. Из вершины A к S2 проведена касательная, и в образовавшийся треугольник с вершиной C вписана окружность
S3
и т. д. Докажите, что окружность S7 совпадает с S1.
Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
а) прямая C1F делит пополам периметр треугольника ABC;
б) три такие прямые, построенные для каждой стороны треугольника,
пересекаются в одной точке.
На сторонах AB, BC и CA треугольника ABC (или
на их продолжениях) взяты точки C1, A1 и B1 так, что ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α. Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что:
а) точка пересечения высот треугольника ABC совпадает
с центром описанной окружности треугольника A'B'C';
б) треугольники A'B'C' и ABC подобны, причём коэффициент подобия равен 2 cos α.
|
|
Сложность: 4+ Классы: 9,10
|
Окружность S1 вписана в угол A треугольника ABC; окружность S2 вписана в угол B и касается S1 (внешним образом); окружность S3 вписана в угол C и касается S2; окружность S4 вписана в угол A и касается S3 и т. д. Докажите, что окружность S7 совпадает с S1.
[Теорема Штейнера-Лемуса]
|
|
Сложность: 5- Классы: 8,9
|
Докажите, что если две биссектрисы треугольника равны, то
он равнобедренный.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 21]