ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной? ![]() ![]() Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α . ![]() ![]() ![]() Клетки доски m×n покрашены в два цвета. Известно, что на какую бы клетку ни поставить ладью, она будет бить больше клеток не того цвета, на котором стоит (клетка под ладьей тоже считается побитой). Докажите, что на каждой вертикали и каждой горизонтали клеток обоих цветов поровну. ![]() ![]() ![]() Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник. ![]() ![]() ![]() У семи Чебурашек есть по два воздушных шарика: красный и жёлтый. ![]() ![]() ![]() В однокруговом турнире участвовали 15 команд. ![]() ![]() ![]() Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников. ![]() ![]() |
Страница: 1 [Всего задач: 5]
Докажите, что если плоскость разбита на части прямыми и окружностями, то получившуюся карту можно раскрасить в два цвета так, что части, граничащие по дуге или отрезку, будут разного цвета.
Докажите, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы каждые две из них имели общую точку.
На прямой даны точки A1, ..., An и
B1, ..., Bn–1. Докажите, что
Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD (A0 = A), An+1 – точка пересечения прямых EBn+1 и AB. Докажите, что AnB = AB/n+1.
Докажите, что если n точек не лежат на одной прямой, то среди прямых, их соединяющих, не менее n различных.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |