Страница: 1
2 3 4 5 6 7 >> [Всего задач: 43]
Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.
|
|
Сложность: 3+ Классы: 7,8,9
|
В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?
Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит а.
При каких значениях а можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?
|
|
Сложность: 3+ Классы: 9,10,11
|
Можно ли уместить два точных куба между соседними точными квадратами?
Иными словами, имеет ли решение в целых числах неравенство: n² < a³ < b³ < (n + 1)²?
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан отрезок длины Можно ли построить циркулем и линейкой (на которой нет делений) отрезок длины 1?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 43]