Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3 Классы: 7,8,9
|
Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Точка $M$ – середина большей боковой стороны $CD$ прямоугольной трапеции $ABCD$. Описанные около треугольников $BCM$ и $AMD$ окружности $\omega_1$ и $\omega_2$ пересекаются в точке $E$. Пусть $ED$ пересекает $\omega_1$ в точке $F$, а $FB$ пересекает $AD$ в $G$. Докажите, что $GM$ – биссектриса угла $BGD$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.
Страница: 1
2 >> [Всего задач: 8]