Страница: 1 [Всего задач: 4]
Задача
77984
(#1)
|
|
Сложность: 4- Классы: 9,10
|
1953 цифры выписаны по кругу. Известно, что если читать эти цифры по часовой
стрелке, начиная с некоторого определённого места, то полученное 1953-значное число делится на 27. Докажите, что если начать читать по часовой стрелке с любого другого места, то полученное число также будет делиться на 27.
Задача
77988
(#2)
|
|
Сложность: 4 Классы: 9,10,11
|
В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно
углы α3, α1, α2. Через точки A1, A2, A3
проводятся прямые, образующие с l соответственно углы π – α1, π – α2, π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.
Задача
77989
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
Задача
77991
(#5)
|
|
Сложность: 3 Классы: 10,11
|
Разрезать куб на три равные пирамиды.
Страница: 1 [Всего задач: 4]