ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 79543  (#1)

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8

Квадрат расчерчен на 16 равных клеток. Каждую из букв A, B, C, D расставьте в этих клетках по четыре раза таким образом, чтобы на каждой горизонтали, каждой вертикали и двух больших диагоналях не было одинаковых букв.

Прислать комментарий     Решение

Задача 79544  (#2)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Необычные построения (прочее) ]
Сложность: 4-
Классы: 7,8,9

Проведя наименьшее количество линий (окружностей и прямых с помощью циркуля и линейки), постройте прямую, проходящую через данную точку параллельно заданной прямой.
Прислать комментарий     Решение


Задача 79545  (#3)

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8

В тёмной комнате на полке в беспорядке лежат четыре пары носков двух разных размеров и двух разных цветов. Какое наименьшее число носков необходимо, не выходя из комнаты, переложить с полки в чемодан, чтобы в нем оказались две пары различного размера и цвета?

Прислать комментарий     Решение

Задача 79547  (#5)

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Найдите все натуральные числа x, удовлетворяющие условиям: произведение цифр числа x равно  44x – 86868,  а сумма цифр является кубом натурального числа.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .