ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 79610

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8

Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?

Прислать комментарий     Решение

Задача 79616

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Прислать комментарий     Решение

Задача 79622

Темы:   [ Раскраски ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 10,11

Каждая грань выпуклого многогранника – многоугольник с чётным числом сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?

Прислать комментарий     Решение

Задача 79628

Темы:   [ Теория алгоритмов (прочее) ]
[ Цепные (непрерывные) дроби ]
Сложность: 4+
Классы: 10,11

Прибор для сравнения чисел  logab  и  logcd  (a, b, c, d > 1)  работает по правилам: если  b > a  и  d > c,  то он переходит к сравнению чисел  logab/a  и  logcd/c  если  b < a  и  d < c,  то он переходит к сравнению чисел  logdc  и  logba;  если  (b − a)(d − c) ≤ 0,  то он выдаёт ответ.
  а) Покажите, как прибор сравнит числа  log2575  и  log65260.
  б) Докажите, что любые два неравных логарифма он сравнит за конечное число шагов.

Прислать комментарий     Решение

Задача 79620

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .