ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 34837

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9,10

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

Прислать комментарий     Решение

Задача 105061

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

Прислать комментарий     Решение

Задача 108684

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.
Прислать комментарий     Решение


Задача 98441

Темы:   [ Комбинаторика (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

2n радиусов разделили круг на 2n равных секторов: n синих и n красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до n. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 105063

Темы:   [ Итерации ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть из точки x либо в точку x/31/2, либо в точку x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Докажите, что, начиная из любой точки, кузнечик может через несколько прыжков оказаться на расстоянии меньше 1/100 от точки a.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .