ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 105151

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8,9

Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.
Прислать комментарий     Решение


Задача 105150

Темы:   [ Перегруппировка площадей ]
[ Касающиеся окружности ]
[ Три окружности одного радиуса ]
[ Площади криволинейных фигур ]
[ Правильный (равносторонний) треугольник ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Хулиганы Джей и Боб на уроке черчения нарисовали головастиков (четыре окружности на рисунке - одного радиуса, треугольник - равносторонний, горизонтальная сторона этого треугольника - диаметр окружности). Какой из головастиков имеет бо'льшую площадь?

Прислать комментарий     Решение

Задача 105152

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
  1) из покупателей, входящих в лифт на втором этаже, половина едет на первый этаж, а половина – на третий;
  2) среди покупателей, выходящих из лифта, меньше трети делает это на третьем этаже.
На какой этаж покупатели чаще ездили с первого этажа, на второй или на третий?

Прислать комментарий     Решение

Задача 108121

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Две касательные, проведенные из одной точки ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9,10,11

В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
EMK = 90°.

Прислать комментарий     Решение

Задача 105153

Темы:   [ Теория игр (прочее) ]
[ Разные задачи на разрезания ]
[ Алгоритм Евклида ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 7,8,9

Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .