ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 107997

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего ]
Сложность: 4
Классы: 8,9,10,11

Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Прислать комментарий     Решение

Задача 108679

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник ABMC , в котором AB=BC , BAM = 30o , ACM= 150o . Докажите, что AM – биссектриса угла BMC .
Прислать комментарий     Решение


Задача 107981

Темы:   [ Индукция (прочее) ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 7,8,9

Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита.

Комментарий. Словом мы называем любую последовательность букв русского алфавита, не обязательно осмысленную, подсловом называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова.

Прислать комментарий     Решение

Задача 107999

Темы:   [ Итерации ]
[ Графики и ГМТ на координатной плоскости ]
[ Поворот на $90^\circ$ ]
[ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
[ Разрывы функций ]
Сложность: 4+
Классы: 9,10,11

а) Известно, что область определения функции  f(x)  – отрезок  [–1, 1]  и  f(f(x)) = – x  при всех x, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции f(x).

б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

Прислать комментарий     Решение

Задача 107992

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Принцип Дирихле (углы и длины) ]
[ Последовательности (прочее) ]
[ Поворот помогает решить задачу ]
[ Симметрия и инволютивные преобразования ]
Сложность: 5-
Классы: 9,10,11

Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5?

Примечание: [c] - целая часть, {c} - дробная часть числа c.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .