ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.) Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]
Решите в целых числах уравнение (x² – y²)² = 1 + 16y.
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
Многоугольник можно разбить на 100 прямоугольников, но нельзя – на 99. Докажите, что его нельзя разбить на 100 треугольников.
Существуют ли два квадратных трёхчлена ax² + bx + c и (a + 1)x² + (b + 1)x + (c + 1) с целыми коэффициентами, каждый из которых имеет по два целых корня?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|