ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 109923  (#97.4.9.3)

Темы:   [ Раскладки и разбиения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 8,9

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

Прислать комментарий     Решение

Задача 109924  (#97.4.9.4)

Темы:   [ Периодические и непериодические дроби ]
[ Принцип Дирихле (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Прислать комментарий     Решение

Задача 109925  (#97.4.9.5)

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин А.

Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.

Прислать комментарий     Решение

Задача 109932  (#97.4.9.6)

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Прислать комментарий     Решение

Задача 108178  (#97.4.9.7)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ломаные ]
Сложность: 4
Классы: 9,10,11

Автор: Сонкин М.

Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .