ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 109939  (#98.4.11.6)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10,11

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .
Прислать комментарий     Решение


Задача 109940  (#98.4.11.7)

Темы:   [ Правильный тетраэдр ]
[ Центральная симметрия ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Объем многогранников ]
[ Вычисление объемов ]
Сложность: 7-
Классы: 10,11

Даны два правильных тетраэдра с ребрами длины , переводящихся один в другой при центральной симметрии. Пусть ϕ – множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры ϕ .
Прислать комментарий     Решение


Задача 109941  (#98.4.11.8)

Темы:   [ Последовательности (прочее) ]
[ Системы алгебраических неравенств ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

Автор: Храмцов Д.

В последовательности натуральных чисел {an},  n = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных n и m выполнено неравенство     Докажите, что тогда  |an – n| < 2000000  для всех натуральных n.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .