ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что px = y³ + 1. ![]() ![]() Найдите все x, при которых уравнение x² + y² + z² + 2xyz = 1 (относительно z) имеет действительное решение при любом y. ![]() ![]() ![]() На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i ![]() ![]() ![]() Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников. ![]() ![]() ![]() По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток? ![]() ![]() |
Страница: 1 [Всего задач: 1]
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
Страница: 1 [Всего задач: 1] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |