ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две концентрические окружности. Каждая из окружностей b1 и b2 касается внешним образом одной окружности и внутренним – другой, а каждая из окружностей c1 и c2 касается внутренним образом обеих окружностей. Докажите, что 8 точек, в которых окружности b1 , b2 пересекают c1 , c2 , лежат на двух окружностях, отличных от b1 , b2 , c1 , c2 . (Некоторые из этих окружностей могут выродиться в прямые.)

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



Задача 110756

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Параллельный перенос ]
[ Правильные многогранники (прочее) ]
Сложность: 5-
Классы: 10,11

Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?
Прислать комментарий     Решение


Задача 110768

Темы:   [ Построение треугольников по различным элементам ]
[ Гомотетичные окружности ]
[ Гомотетия: построения и геометрические места точек ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Формула Эйлера ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 5+
Классы: 9,10,11

Постройте треугольник, если даны центр вписанной в него окружности, середина одной из сторон и основание опущенной на эту сторону высоты.
Прислать комментарий     Решение


Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 110757

Темы:   [ Концентрические окружности ]
[ Теорема Птолемея ]
[ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 8+
Классы: 10,11

Даны две концентрические окружности. Каждая из окружностей b1 и b2 касается внешним образом одной окружности и внутренним – другой, а каждая из окружностей c1 и c2 касается внутренним образом обеих окружностей. Докажите, что 8 точек, в которых окружности b1 , b2 пересекают c1 , c2 , лежат на двух окружностях, отличных от b1 , b2 , c1 , c2 . (Некоторые из этих окружностей могут выродиться в прямые.)
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .