ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В натуральном числе A переставили цифры, получив число B.
Известно, что ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64]
В натуральном числе A переставили цифры, получив число B.
Известно, что
Внутри равнобедренного треугольника ABC (AB = BC) выбрана точка M таким образом, что ∠AMC = 2∠B. На отрезке AM нашлась такая точка K, что
В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?
Петя придумал 1004 приведённых квадратных трёхчлена f1, ..., f1004, среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения fi = fj (i ≠ j), и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?
Существуют ли такие простые числа p1, p2, ..., p2007, что
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 64] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |